An Ambipolar BODIPY Derivative for a White Exciplex OLED and Cholesteric Liquid Crystal Laser toward Multifunctional Devices.

نویسندگان

  • Marian Chapran
  • Enrico Angioni
  • Neil J Findlay
  • Benjamin Breig
  • Vladyslav Cherpak
  • Pavlo Stakhira
  • Tell Tuttle
  • Dmytro Volyniuk
  • Juozas V Grazulevicius
  • Yuriy A Nastishin
  • Oleg D Lavrentovich
  • Peter J Skabara
چکیده

A new interface engineering method is demonstrated for the preparation of an efficient white organic light-emitting diode (WOLED) by embedding an ultrathin layer of the novel ambipolar red emissive compound 4,4-difluoro-2,6-di(4-hexylthiopen-2-yl)-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (bThBODIPY) in the exciplex formation region. The compound shows a hole and electron mobility of 3.3 × 10-4 and 2 × 10-4 cm2 V-1 s-1, respectively, at electric fields higher than 5.3 × 105 V cm-1. The resulting WOLED exhibited a maximum luminance of 6579 cd m-2 with CIE 1931 color coordinates (0.39; 0.35). The bThBODIPY dye is also demonstrated to be an effective laser dye for a cholesteric liquid crystal (ChLC) laser. New construction of the ChLC laser, by which a flat capillary with an optically isotropic dye solution is sandwiched between two dye-free ChLC cells, provides photonic lasing at a wavelength well matched with that of a dye-doped planar ChLC cell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Spatial Tuning of Laser Emissions in a Full Visible Spectral Range

In order to achieve a continuous tuning of laser emission, the authors designed and fabricated three types of cholesteric liquid crystal cells with pitch gradient, a wedge cell with positive slope, a wedge cell with negative slope, and a parallel cell. The length of the cholesteric liquid crystal pitch could be elongated up to 10 nm, allowing the lasing behavior of continuous or discontinuous s...

متن کامل

Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal syst...

متن کامل

Multi-wavelength laser from dye-doped cholesteric polymer films.

A multi-wavelength laser is demonstrated using a dye-doped cholesteric polymer film whose reflection bandwidth is broadened with several oscillations. Due to the abrupt change of the density of state between oscillation peak and valley, each oscillation functions as a photonic band gap for generating a laser wavelength under the excitation of a pumping laser. As a result, a multiple wavelength ...

متن کامل

Direction controllable linearly polarized laser from a dye-doped cholesteric liquid crystal.

We demonstrate a direction controllable linearly polarized laser from a dye-doped cholesteric liquid crystal (CLC) in a homogeneous cell coated with a metallic mirror on the inner side of a glass substrate. Due to coherent superposition of two orthogonal polarization states, the output laser light becomes linearly polarized and its output energy is greatly enhanced. Moreover, the linear polariz...

متن کامل

Experimental Investigation of Laser Emission of Dye-Doped Cholesteric Liquid Crystals with a Cholesteric Reflector

Dye-doped cholesteric liquid crystal (CLC) behaves like a one-dimensional photonic crystal laser when pumped by a second harmonic Nd-YAG pulsed laser. Usually circularly polarized laser light in the same sense as the cholesteric helix is emitted from both directions of the lasing cell. In this paper, we experimentally demonstrate the laser emission enhancement and investigate the corresponding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 2017